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Abstract

A semi-analytic technique has been developed to speed up the integration of radiative transfer over
optically thick media for the successive order of scattering (SOS) method. Based on the characteristics of
the internal distribution of scattering intensity, this technique uses piecewise analytic eigenfunctions to fit
internal scattering intensities and integrates them analytically over optical depth. This semi-analytic
approach greatly reduces the number of sub-layers required for accurate radiative transfer calculation
based on the SOS method. Results show that an accuracy of 1% for both flux and radiance (polar angle less
than 67°) can be achieved with a significantly small number of layers. This technique is accurate and
efficient and makes the SOS method applicable for optically thick scattering media.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The successive order of scattering (SOS) method is physically straightforward by computing
contributions of each scattering event. Since the SOS method traces photons for each scattering
event, the inhomogeneous structure of a medium as well as gaseous absorption process can be
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incorporated in the calculation in terms of integration along the photon path [1]. It has potentials
for parameterization of radiative transfer in remote sensing and global climate modeling.
However, substantial computational burden due to a slow convergence with a high single
scattering albedo and a large number of sub-layers for an optically thick medium, prevents
extensive uses of the SOS method. To improve computational efficiency and accuracy of the SOS
method, several techniques have been proposed to simplify the integration of the source function
along photon paths, such as a polynomial fit [2] and a linear-exponent fit [1]. Both methods
significantly reduce the computational time with a smaller number of sub-layers and an easier
analytical integration. However, these methods still require a substantial number of sub-layers for
optically thick media. In this paper, we develop a semi-analytic approach to further reduce the
computational time so that the SOS can be applied to optically thick media. A detailed description
of the method is given in Section 2, and extensive validations will be discussed in Section 3.

2. The SOS method and issues

The solution of radiative transfer for the SOS method is expressed as a summation of
contributions of all successive orders of scattering [1,3]:

I, 1) = L 1, §), ()
n=1

where [ is the intensity at optical depth 7, cosine of polar angle u, and azimuthal angle ¢; subscript
n stands for the nth scattering order. Since the integration is separated for each azimuthal
direction, we eliminate ¢ in the following discussion. For each scattering order, the downward
and upward intensities, 7} and I, can be given by integrations along optical paths
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where J,, is the source function for the nth scattering order, 7y and 74 are the upper and bottom
boundary layers, respectively. The source function, J,, can be written as

w
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where Fy is the extra-terrestrial solar irradiance, p, is the cosine of solar zenith angle, P is
the scattering phase function. The intensity of the first scattering order, I, can be solved
analytically as
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For higher scattering orders, the distribution of .J,, inside a layer is more complicated and does not
have a simple analytic expression. The intensity, however, has to be integrated numerically. To
ensure numerical integration accuracy, an optically thick layer is traditionally divided into
multiple sub-layers with a small incremental optical depth (<0.05). Therefore, the distribution of
the source function within a sub-layer can be assumed to be linear. A layer with optical depth
of 5 has to be sliced into at least 200 sub-layers to achieve an accuracy of 1%. Furthermore,
Eq. (1) converges very slowly when the single scattering albedo approaches 1 for an optical thick
media. For example, several hundreds of successive scattering are necessary for optical depth
greater than 5.

2.1. Semi-analytical approach for integration

Herman et al. [2] extensively studied internal distributions of source function in the
Gauss—Seidel method and noted that rapid changes of intensity occur near layer boundaries.
They divided a layer into unevenly spaced sub-layers with an incremental optical depth from both
boundaries to the layer center. Further, they fitted the source function into a polynomial function
and integrated it analytically. For a case of optical depth of 5, Herman et al.’s method requires 52
sub-layers to get a satisfactory result. Recently, Min and Duan [1] used a linear-exponent function
to fit the internal source function of a sub-layer. For evenly spaced slices, a layer of optical depth
of 5 requires 50 sub-layers for a layer of optical depth of 5. If an unevenly spaced scheme is
adopted, the number of sub-layers may be reduced slightly. However, both approaches are still
inadequate for dealing with cases with optical depth larger than 5.

Based on the discrete ordinate method, the intensity distribution in a homogeneous layer can be
expressed as

K K
It,m) =Y By X (e + > BiXF(we ™ + Cp)e™"/*, (5)
k=1 k=1

where Xif(u) are the eigenvectors relative to eigenvalues of £/, which depend upon the single
scattering properties of the scattering layer [4]. Bf and C are coefficients determined by boundary
conditions. Eq. (5) illustrates the characteristics of the internal distribution of intensity within a
layer and provides an analytical formula of internal distribution of intensity for all orders of
successive scattering. Considering numerical implementation, we select a two-stream approxima-
tion with an unevenly spaced piecewise fitting. Fig. 1 illustrates the coordinates of this semi-
analytical piecewise fitting and its corresponding indexes. The analytic function for each sub-piece
can be written as

L (t, 1) = X, (we™ + X (we™ + V(e " 1 € (tam_2, Tam)- (6)

To ensure the computational stability, the coefficients in the above equation are scaled by

B, (1) = X, (we’™,



24 M. Duan, Q. Min | Journal of Quantitative Spectroscopy & Radiative Transfer 95 (2005) 21-32

/uf.‘
+U —i
7, ; /
g }Piecel
7, -
L L I L ] . 0 . 0 * 0 L B ] . e 0 L ]
'
& T e 7 Piece m
=
:’; j
r

* e e 0 e o0 * e e\ e e e e L * e s o 0w

T‘?}l—Q
Thkiy o< contstosiiots 02 e S S \ l‘1"im:e';'tl
g J

Fig. 1. Coordination of the SOS method.

By (1) = X (e =,

Cm(:u) = Ym(ﬂ)eirzmizﬂuo- (7)

Inserting Eq. (7) into Eq. (6), we have a numerically stable equation
Li(z, 1) = B;l(‘u)e—i(rzm—r) + B;(,u)e_i(f_””'*z) + Cm(u)e_(f_”""*”/“‘), T € (Tam_2, Tom), (8)

while the coefficients of B}, B,., C,,, and A can be given by nonlinearly fitting 7,,_; as a function of
optical depth within (72,2, T2,) for each direction. Inserting Eq. (8) into Eq. (3), the source

function J, for the nth scattering order can be given as

Jo(t, 1) = m;(u)e%(rzmﬂ) + g}g;(u)efi(rfrszz) + Zm(u)ef(rffszz)/#o, T € (Tam—2, Tom), 9)
where R, R z,, can be easily given by Egs. (3) and (8). Inserting Eq. (9) into Eq. (2), the final
solution can be integrated analytically as
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where 0t = 1; — Top—2; €T = T2 — T;; AT = T2, — Tom—2. Such a piecewise and semi-analytical
approach will ensure computational efficiency and accuracy.

2.1.1. Selection of 4

For further simplicity, we prescribe the eigenvalue, /4, based on the single scattering properties
of the layer at a particular scattering order. Thus, Eq. (8) becomes explicitly a linear equation, and
coefficients, B/, B, C,,, can be solved analytically and efficiently from intensities at 3 sub-layers
at To,_2, Tom—1 and Ty, as illustrated in Fig. 1. As shown in Figs. 2 and 3, the internal distribution
of intensity varies gradually and systematically as the scattering order increases due to radiation
smoothing of multiple scattering. Such internal variation is characterized by the eigenvalues of the
radiation field for a particular scattering order. The eigenvalue decreases as the scattering order
increases. Therefore, we assume that the eigenvalue at the nth scattering order, /,, changes in the

following way:

in = O()Ln—l = anillla
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Fig. 2. Intensity distribution along optical depth of each scattering. The upper and lower panel are for upward at TOA
and downward radiance at surface, respectively. Results in this figure are for polar angle 48.9, optical depth of 10, single
scattering albedo of 0.99 and surface albedo of 0.0.
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Fig. 3. Same as Fig. 2 except for surface albedo of 0.8.

where n is the scattering order, and « is the reduction multiplier. Since we will divide an
entire homogeneous layer into unevenly spaced slices and fit each piece (3 sub-layers) with Eq. (8),
the slow variations are captured by the piecewise fitting process and the fast variations are
determined by the two-stream analytical fitting. Therefore, we assume that A; is a fraction
(80%) of the larger eigenvalue of a four-stream approximation, which is determined by the
single scattering properties of the homogeneous layer. Based on trial and error, the multiplier is
set to be 0.65.

2.1.2. Unevenly spaced sub-layers

Figs. 2 and 3 also illustrate that rapid changes of internal intensity for all scattering orders
occur near the top and bottom of the layer. In order to simulate the rapid changes near layer
boundaries accurately, an unevenly spaced grid scheme is adopted. We use a quadratic function to
define the unevenly spaced sub-layer from the layer boundary to the layer center as

7, =0.140.14i + ¢i> fort>1,

7, = 0.05(1. + i+ ¢i®) for <1,
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where the coefficient ¢ is determined by the total number of sub-layers, N =2N,,, — 1. For a
given optical depth of a layer, 7, the total value Ny, and ¢, can be expressed as

Nijp=INT(24+V7/2+1/4),
¢=(1—02—028N,;)/2N], forz>1,

¢=(10t—1=Nyp)/N7, fore<l.

In this scheme, the optical depth of the sub-layer increases from the top and bottom of the layer to
the layer center. For layers with optical depths of 5, 10, 20 or 50, the unevenly spaced scheme only
requires 7, 11, 17 or 35 sub-layers, respectively, substantially reducing the number of sub-layers
for a thick media. For example, for an optical depth of 5, the number of sub-layers for the simple
linear scheme, the polynomial fitting scheme, and the linear-exponent fitting scheme are 152, 52
and 50, respectively.

2.2. Convergence of successive scattering

The solution convergence of the SOS method becomes very slow when the single scattering
albedo of an optically thick layer tends to 1. It is necessary to accelerate the convergence to reduce
the computational burden of the SOS method. Lenoble [3] noticed that for conservative scattering
of an optically thick media, the ratio of two successive scattering radiances asymptotically
approaches a constant. Fig. 4 shows ratios of 1,,/1,_; as a function of scattering order at different
levels for a case with total optical depth of 10. In this simulation, we set the single scattering
albedo to 0.99999 and the surface albedo to 0.0. The upper panel is for upward radiances for a
polar angle of 48.9° and the lower panel for downward radiances at the same polar angle. It is
clear that when the scattering order exceeds 40, the ratio of the two successive scattering radiances
approaches 0.93 at all levels. The same holds true at other polar angles, as shown in Fig. 5. The
fundamental reason is that photons lose the memory of their origin after several scattering events
and thus the radiation field asymptotically reaches a diffusion equilibrium state. This provides a
further way to accelerate the convergence, i.e., the summation of Eq. (1) can be truncated at the
nth order of scattering when the ratio approaches a constant. The reminder can be replaced by a
geometric series as

N-1
It ) =Y L(t, 1, ) + In(z, 1, $) /(1 = b), (10)
n=1
where b = I'y/Iy_;. Therefore, we significantly reduce computational time without calculating

higher order of scattering.

3. Results

An extensive sensitivity study has been conducted to test the efficiency and accuracy of this
semi-analytical approach. Those tests are aimed at two kinds of potential applications of the SOS
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Fig. 4. Ratio of I,,/I,-; as a function of scattering order at different optical depths. The upper and lower panel

are for upward and downward radiance, respectively; polar angle is 48.9, w = 0.99, surface albedo is 0.0, total optical
depth is 10.

method: intensity and flux. Based on current accuracies of most remote sensing instruments
and models, we set the goal of accuracy of this approach to be better than 1% for both
calculations. We used DISORT as our benchmark model to compute the total radiances at
the top and bottom of the atmosphere [5]. For each scattering order, we computed the
benchmark results of intensity distributions using the SOS method with a small incremental
optical depth of 0.025.

Fig. 2 shows the comparison of internal intensity distributions between benchmark results and
semi-analytical calculations with 11 sub-layers for total optical depth of 10. In this case, the single
scattering albedo is 0.99 and the surface albedo is 0.0. The numbers in Fig. 2 represent the
benchmark values for the corresponding scattering orders. The lines indicate the results of this
semi-analytical method and illustrate that the piecewise eigenfunction fitting approach can
simulate the internal distributions of intensity well for each scattering order. Fig. 3 shows a case
with the same settings as Fig. 2 except for a surface albedo of 0.8. It further illustrates that
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Fig. 5. Ratios of I,/I,_; as a function of scattering order at different polar angles. The upper and lower panel
are for upward at TOA and downward radiance at surface, respectively; @ = 0.99, surface albedo is 0.0, total optical
depth is 10.

unevenly spaced piecewise eigenfunction fitting produces accurate internal distribution of
intensity near both layer boundaries.

Fig. 6 shows the comparison of intensity at the top and bottom of the atmosphere as a
function of polar angles for four different cases with total optical depths of 5, 10, 20 and 50. The
left panels are for upward radiances and their differences at TOA while the right panels
are for downward values at the bottom of atmosphere. The benchmark results are calculated
from DISORT. It shows that the relative errors are less than 1% when the polar angles are
smaller than 67°. For large polar angles (>67°), the errors are about a few percent. However,
intensities at large polar angles contribute very little to the total flux. As listed in Table 1, the
accuracy of fluxes at the top and bottom of the atmosphere for this semi-analytical
approach is better than 1%. In most applications, observations at extreme polar angles (>67°)
are seldom used because a simple plane-parallel model is no longer applicable. Furthermore,
it is possible to improve accuracy at large polar angles by slicing the layer based on slant
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Fig. 6. Intensity and its difference distribution with polar angles. The left panels are for upward at TOA, the right
panels for downward at bottom of atmosphere, @ = 0.99, surface albedo is 0.0.

optical depth, i.e., different polar angles will space differently. Doing so would increase
computational time a bit.

4. Summary

Two obstacles prevent extensive use of the SOS method: a large number of sub-layers and slow
convergence for optically thick medium. In this paper, we exploited a piecewise analytic
eigenfunction to fit the internal distribution of intensities for optically thick media. The piecewise
eigenfunction approach substantially reduces the number of sub-layers required for accurately
computing the radiative transfer via the SOS method. It requires only seven sub-layers for a
conservative scattering case with an optical depth of 5, a seven-fold reduction in computational
time compared to existing fast methods. For thicker optical layers, it reduces computational time
even more dramatically. For example, 11, 17 and 35 sub-layers are sufficient for conservative
scattering with optical depths of 10, 20 and 50, respectively. Furthermore, we truncate the
calculation at the scattering order when the ratio of two successive scattering approaches a
constant, and replace the higher order contributions with a geometric series. For a conservative
scattering with a thick optical depth, this method needs only 40 successive scattering orders to
achieve the required accuracy. More importantly, extensive case studies show an accuracy of 1%
for both flux and radiance calculations (with polar angles less than 67°). This technique is accurate
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Table 1
Upward flux at TOA and downward flux at bottom of atmosphere and comparison with that of DISORT
t ngsorl FsTos 4 (%) Féisorl Fslos A (0/0)

For ©=0.99 and A = 0.0

5 6.9893(—1) 6.9967(—1) 0.11 1.7738 1.7762 0.14
10 1.0509 1.0548 0.37 1.1794 1.1849 0.47
20 1.2892 1.2930 0.29 5.6552(—1) 5.6723(—1) 0.30
50 1.3644 1.3617 —0.20 7.2217(=2) 7.1605(—2) —0.85
For =099 and A =0.8

5 1.8028 1.8036 0.04 2.4637 2.4671 0.14
10 1.5992 1.6045 0.33 1.8683 1.8766 0.44
20 1.4283 1.4320 0.26 9.8877(—1) 9.9122(-1) 0.25
50 1.3668 1.3640 —0.20 1.3053(—1) 1.2950(—1) —0.79
For w=0.5and A =0.0

5 3.6086(—2) 3.5975(-2) —0.31 8.9548(-2) 8.9237(-2) —0.35
10 3.6112(=2) 3.6000(—2) —0.31 3.2665(—3) 3.2521(-3) —0.44
20 3.6112(=2) 3.6000(—2) 031 4.1653(—6) 4.2048(—6) 0.95
50 3.6112(=2) 3.5995(—2) —0.32 1.0014(—14) 1.0428(—14) 4.13
For =0.5and A =0.8

5 3.7907(-2) 3.7802(—2) —0.28 9.1717(-2) 9.1523(-2) —0.21
10 3.6114(=2) 3.6002(—2) —0.31 3.3394(-3) 3.3289(-3) —0.31
20 3.6112(=2) 3.6000(—2) ~031 4.2575(—6) 4.3034(—6) 1.08
50 3.6112(=2) 3.5995(-2) -0.32 1.0236(—14) 1.0672(—14) 4.26

and efficient and makes the successive order of scattering method applicable for optically thick
scattering media.
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